Solutions to Navigation Practice

1a) Fl 6sec 64ft 15M HORN-- Flashing white light, 6 second period, 64 feet high, 15 mile light visibility with a horn.
1b) Gp Occ (1+2) 15sec 65ft 16M Racon-- Group occulting white light, 1 dark followed by 2 darks, 15 second period, 65 feet high with a radar responder.
1c) KGR- Rectangular green dayboard bearing a central red stripe.
1d) GR "A" Fl (2+1) G 6s-- Green over red channel junction buoy, group flashing green light, 1 flash followed by 2 flashes, 6 second period. For preferred channel, leave this buoy to port side when enter from sea.

2a) Drying heights and contours above chart datum; I-15 of Chart \#1.
2b) Rock which covers and uncovers during tidal swings; number designates height in feet above chart datum when uncovered; refer to K11 of Chart \#1.
2c) Dangerous wreck, depth unknown; refer to K28 of Chart \#1.
2d. Oil or gas installation buoy, or catenary anchor leg mooring, or single buoy mooring; refer to L16 of Chart \#1.
2e) Established (mandatory) direction of traffic flow; refer to M10 of Chart \#1.
2f) Rip rap surrounding a light; refer to Pa of Chart \#1.
2g) Mean lower low water; refer to $\mathbf{H 1 2}$ of Chart \#1.
2h) Position doubtful; refer to B8 of Chart \#1.
3a) Water depths
3b) Distances
3c) Bearings
4a) Description of the entire Nav Aid system in US waters.
4b) Locations of Nav Aids
4c) Light Characteristics and descriptions of specific Nav Aids
4d) Geographic range table
5a) USCG Light List for US waters
5b) NGA List of Lights for non-US waters
5c) Chart \#1
5d) Ocean Pilot Charts
6) NOAA Website
7) Starboard

8a) USCG Notices to Mariners.
8b) NGA Website.
9a) Safe Water mark.

9b) Isolated Dangers mark.
9c) Unlighted green can; leave to portside entering from sea.
9d) Lighted yellow special mark.
9e) Black \& white dayboard.
Part II- Questions 10 to 15 contain 32 answers valued at 2 points each. Max points = 64 .
First, it is necessary to update the magnetic Variations on 1210 Tr from the date of the chart. There are three compass roses on this chart and they all have a slightly different Variation, which range from $15^{\circ} 00^{\prime} \mathrm{W}$ in the SW corner of the chart to $15^{\circ} 30^{\prime} \mathrm{W}$ in the NE corner. All show an annual increase of 3 ' W , which needs to be applied for the elapsed 19 years from 1985 to 2004. Correct as follows:

$15^{\circ} 00^{\prime} \mathrm{W}$	in 1985	$15^{\circ} 30 ' \mathrm{~W}$	in 1985
$\underline{57^{\prime} \mathrm{W}}$	$19 \times 33^{\prime}$	$\underline{57} \mathrm{~W}$	$19 \times 33^{\prime}$
$15^{\circ} 57^{\prime} \mathrm{W}$	in 2004	$16^{\circ} 27^{\prime} \mathrm{W}$	in 2004

Round these off to a whole degree, which in both cases produce $16^{\circ} \mathrm{W}$; therefore we can use $16^{\circ} \mathrm{W}$ Variation for the entire chart in the year 2004.
10) First plot your DR. Since the magnetic compass rose is out of date as discussed above, convert the course from ${ }^{\circ} \mathrm{psc}$ to ${ }^{\circ} \mathrm{T}$ using $16^{\circ} \mathrm{W}$ Variation as discussed above and the Deviation table earlier given:

	T	V	M	D	C
Course	231	16 W	247	1 E	246

Plot the DR from 0900 starting at buoy R"26" Fl R 4 sec Bell and draw in a course line at $231^{\circ} \mathrm{T}$. Speed is given as 4.9 knots; spread your dividers to this distance using the latitude scale on the right or lefthand sides of the chart and mark the distance from 0900 to 1000, from 1000 to 1100 and from 1100 to 1130; mark these points with a half circle and a dot and write in the times. See attached plot 13-10a.

A three bearing fix was shot at $\mathbf{1 1 3 0}$. One was a visual range based on the E end of Nashawena Island when it aligned perfectly with the \mathbf{W} end of Pasque Island; draw in this line on the chart.

The other two bearings were shot across the ship's compass and need to be converted from ${ }^{\circ} \mathrm{psc}$ to ${ }^{\circ} \mathrm{T}$ as follows:

	T	V	M	D	C
Cuttyhunk	301	16 W	317	1 E	316
Gay Head	138	16 W	154	1 E	153

Plot these two additional bearings and you'll find that they cross very close to a single point as shown is the attached plot; this is your 1130 Fix; mark it with a circle and a dot and write in the time of 1130 . See attached plot 13-10b.

The 1130 Fix is not at the 1130 DR position. The difference is attributed to current assumed to be acting on the boat over the previous 2-1/2 hours. You were pushed from the DR to the Fix by the current. Draw in this line and measure its direction by transferring it with parallel rules to the compass rose; it should be $280^{\circ} \mathrm{T}$, which is assumed to be the current Set.

Measure the distance from the DR to the Fix and it should be 0.64 NM; this is not the current Drift velocity, it's the distance that the current pushed us during a 2-1/2 hour period. So, Drift velocity is:

$$
\text { Drift }=0.64 \text { NM } \div 2.5 \text { hours }=0.26 \text { knots }
$$

From the Fix continue plotting the DR from 1130 to 1200 and mark this point with a half circle and a dot.

Determine the latitudes and longitudes of the 1130 DR, the 1130 fix and the 1200 DR.

11) Plot the desired COG (Track) from buoy BW "VS" Whistle to buoy R"2" Fl R 4 sec Whistle; it should be $125^{\circ} \mathrm{T}$. You need to determine the course to steer needed to compensate for the current flow and stay on your desired course. This is a Type \mathbf{C} current problem as discussed in Chapter 7 of the text; here's what you know:

C	$?$
S	5.1 knots
Set	$20^{\circ} \mathrm{T}$
Drift	1.6 knots
COG	$125^{\circ} \mathrm{T}$
SOG	$?$

Plot the COG of $125^{\circ} \mathrm{T}$. Plot the Set of $\mathbf{2 0}^{\circ} \mathrm{T}$. Measure the Drift velocity of $\mathbf{1 . 6}$ knots along the Set vector and place a mark there.

Now, adjust your dividers to the boat speed S of 5.1 knots; place one end of the dividers at the end of the current vector and swing the other end of the dividers to find where it touches the COG vector; put a mark at this point.

Speed over ground is determined by measuring the length on the "over ground" side of the triangle, which should be 4.5 knots. Use this speed to determine the ETA at buoy R"2" Fl R 4 sec Whistle as follows:

Transit time $=$ Distance \div SOG
$=9.3 \mathrm{NM} \div 4.5$ knots
$=2.066$ hours
= 2 hours \& 04 minutes.
ETA = Departure time + Transit Time
$=1300+0204$
$=1504$

12) The desired COG (Track) for this question is the reciprocal of that for question \#11, or

$$
\text { Track }=125^{\circ} \mathrm{T}+180^{\circ}=305^{\circ} \mathrm{T}
$$

	T	V	M	D	C
Track	305	16 W	321	1 W	322

To counteract the NE wind and stay on track you need to steer toward the wind by the amount of the leeway or 7°, thus:

	T	V	M	D	C
CTS	312	16 W	328	1 W	329

13-13) Draw a danger bearing line from the G " 5 " Fl G 4 sec Gong buoy to the BW "BB" $\mathrm{Mo}(\mathrm{A})$ Bell buoy and notice that the wreck lies just N of this line. This bearing line is $71^{\circ} \mathrm{T}$, which we need to convert to psc to allow monitoring on the ship's compass.

	T	V	M	D	C
Bearing	71	16 W	87	4 W	91

We want to stay S of this line to remain away from the wreck. This danger bearing line is NOT a course line; we may choose to sail on a course below it and remain further away from the wreck. While doing this, we monitor the compass bearing to the BW "BB" Mo(A) Bell buoy; as long as this bearing remains LESS than $91^{\circ} \mathrm{psc}$; we'll be away from the wreck.

Bearings of more than $91^{\circ} \mathrm{psc}$ would put us \mathbf{N} of the danger bearing line.

14) This is a running fix question. First draw in the desired COG (Track) from the BW "BB" Mo(A) Bell buoy to the Fl 10 sec 74ft 16M HORN R Bn 308 beacon at Cleveland Ledge Channel; it should be $42^{\circ} \mathrm{T}$; convert to ${ }^{\circ} \mathrm{psc}$ as follows:

	T	V	M	D	C
Track	42	16 W	58	4 W	62

Initially, you'll steer the $\mathbf{6 2}^{\mathbf{}} \mathbf{~ p s c}$ lacking any information about current or leeway.
Since bearings were shot on the tower at 1020 and 1040, you'll need to locate your DR positions for these times. Calculate the distance traveled from 1000 to 1020 at a boat speed of 6.2 knots. This is $1 / 3$ hour, so distance is $1 / 3$ hour $x 6.2$ knots $=2.1$ NM. Measure this distance and mark the point with a dot and half circle on the course line. Do the same for 1040.

Convert these bearings from ${ }^{\circ} \mathrm{psc}$ to ${ }^{\circ} \mathrm{T}$ as follows and draw them in on the chart.

	T	V	M	D	C
1020 Bearing	334	16 W	350	4 W	354
1040 Bearing	277	16 W	293	4 W	297

Advance the 1020 bearing line in the direction and distance of the DR between 1020 and 1040. This is done by drawing a line parallel to the course line between 1020 and 1040 and marking off the distance covered by the DR in that time starting from where this line intersects the 1020 bearing line.

As shown in the next plot, the actual COG achieved is $35^{\circ} \mathrm{T}$ from the starting buoy to the RFix, and the wind leeway is therefore $42^{\circ} \mathrm{T}-35^{\circ} \mathrm{T}=7^{\circ}$ to port.

The desired course (Track) from the RFix to the destination buoy is $\mathbf{4 8}^{\circ} \mathrm{T}$ and you'll need to steer toward the wind (to the right) by 7° in order to stay on track. So, CTS $=48^{\circ} \mathrm{T}+7^{\circ}=$ $55^{\circ} \mathrm{T}$ and this converts to $75^{\circ} \mathrm{psc}$.

	T	V	M	D	C
Actual COG	35	16 W	51	4 W	55
New Track	48	16 W	64	4 W	68
New CTS	55	16 W	71	4 W	75

15) This question verifies the accuracy of the Deviation table while on one boat heading of 344° psc. Using a pelorus you shot the range between the two towers on Cuttyhunk and found it to be $\mathbf{9 8}{ }^{\mathbf{o}}$ relative off of your starboard bow. Therefore, the bearing along the range between the towers, based on the compass is:

$$
\begin{aligned}
& \text { Bearing of range } \\
& =344^{\circ} \mathrm{psc}+\mathbf{9 8}^{\circ} \\
& =\mathbf{4 4 2 ^ { \circ }} \mathbf{~ p s c}-\mathbf{3 6 0}^{\circ} \\
& =\mathbf{8 2}^{\circ} \mathbf{p s c}
\end{aligned}
$$

The chart shows this range to be $60^{\circ} \mathrm{T}$, and we enter this information in the table as follows:

	T	V	M	D	C
Range	60	16 W	76	6 W	82

From this observation we compute the compass deviation to be $6^{\circ} \mathrm{W}$ for a boat heading of $344^{\circ} \mathrm{psc}$, but the Deviation table gives $1^{\circ} \mathrm{W}$ for this heading. So, either the Deviation table is in error or our shot was in error.

16) What is the time and height of the lowest tide at Newport, RI on January 29, 1997? This is a direct lookup in the tide table of Appendix G-15.

Newport, R.I., 1997

Times and Heights of High and Low Waters

Time meridian $75^{\circ} \mathrm{W} .0000$ is midnight. 1200 is noon.
Heights are referred to mean lower low water which is the chart datum of soundings.
17) What is the time and height of the lowest tide at Portland Head Light on February 18, 1997?

From Appendix page G-12 find Portland Head Light \#869 and a Low Water height ratio of 0.97 and a time difference of -2 minutes compared with the reference station at Portland, Maine.

Portland, Maine on Appendix page G-14 for February 18, 1997 gives the lowest tide height as 0.3 feet at 1448 .

Therefore, at Portland Head Light, Low Water would be:

$$
\text { Time }=1448-0002=1446 \text { hours } / \text { minutes }
$$

Height $=0.3$ feet $\mathbf{x} 0.97=0.29$ feet
18) Convert Eastern Standard Time to Eastern Daylight Time.

EDT = EST + 1 hour
19) What is the time of the maximum flood current at Boston Harbor, Deer Island Light on February 19, 1997? This is a straight lookup on Appendix page I-8.

13-20) What is the direction, velocity and time of the maximum ebb current at Wareham River off Barneys Point on January 23, 1997?

On Appendix page I-7 find Wareham River, Barney's Point \# 2141

- Time difference is given as - $\mathbf{1}$ hour \& $\mathbf{3 1}$ minutes under Ebb
- Speed Ratio is given as $\mathbf{0 . 4}$ under Ebb.
- In the right hand column under Max Ebb the direction is given as $185^{\circ} \mathrm{T}$.
- Reference Station is given as Pollock Rip Channel

On Appendix page I-9 find Pollock Rip Channel daily predictions

- Max Ebb current is given at 1.8 knots at 1212
- At Wareham River, Barney's Point:

Time $=1212-0131=1041$ EST
Velocity $=1.8$ knots $\times 0.4=0.72$ knots

TABLE 2 - TIDAL DIFFERENCES AND OTHER CONSTANTS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No.} \& \multirow[b]{2}{*}{PLACE} \& \multicolumn{2}{|r|}{POSITION} \& \multicolumn{4}{|c|}{DIFFERENCES} \& \multicolumn{2}{|l|}{RANGES} \& \multirow[b]{2}{*}{Mean Tide Level} \\
\hline \& \& Latitude \& Longitude \& High Water \& \begin{tabular}{l}
Low \\
Water
\end{tabular} \& High Water \& \[
\begin{aligned}
\& \text { Low } \\
\& \text { Water }
\end{aligned}
\] \& Mean \& Spring \& \\
\hline \& MAINE, Casco Bay-cont. Time meridian, \(75^{\circ} \mathrm{W}\) \& North \& West \& \& h m
on Portl \& ft \({ }_{\text {d, }}\) \& ft \& ft \& ft \& ft \\
\hline 833 \& Little Flying Point, Maquoit Bay \& \(43^{\circ} 50^{\prime}\) \& \(70^{\circ} 03^{\prime}\) \& -001 \& -001 \& *0.99 \& *0.99 \& 9.0 \& 10.3 \& 4.8 \\
\hline 835 \& South Freeport \& \(43^{\circ} 49^{\prime}\) \& \(70^{\circ} 06^{\prime}\) \& +0 12 \& +0 10 \& -0.99 \& 0.99 \& 9.0 \& 10.3 \& 4.8 \\
\hline 837 \& Chebeague Point, Great Chebeague Island. \& \(4^{43^{\circ}}{ }^{\circ} 46^{\prime}\) \& \(70^{\circ} 06^{\prime}\) \& -004 \& -009 \& - 0.99 \& -0.99 \& 9.0 \& 10.4 \& 4.8 \\
\hline 839 \& Prince Point . \& \(43^{\circ} 46^{\prime}\), \& \(70^{\circ} 10^{\prime}\) \& 000 \& 000 \& -1.01 \& -1.00 \& 9.2 \& 10.6 \& 4.9 \\
\hline 841 \& Doyle Point ... \& \(43^{\circ}{ }^{\circ} 45^{\prime}\), \& \(70^{\circ}{ }^{\circ} 8^{\prime}\) \& -0 02 \& -0 03 \& *1.00 \& -0.88 \& 9.2 \& 10.5 \& 4.9 \\
\hline 843 \& Falmouth Foreside... \& \(43^{\circ}{ }^{\circ} 44^{\prime}\) \& \(70^{\circ} 12^{\prime}\) \& +001 \& 000 \& *1.00 \& -1.03 \& 9.1 \& 10.5 \& 4.9 \\
\hline 845
847 \& Great Chebeague Island
Cliff Island, Luckse Sound \& \begin{tabular}{l}
\(43^{\circ}\) \\
\(43^{\circ}\) \\
\(43^{\prime}\) \\
\hline
\end{tabular} \& \(70^{\circ}\)
\(700^{\circ}\)
70 \& +003
+002 \& +003
+002 \& *1.00 \& -1.00 \& 9.1
9.1 \& 10.5
10.4 \& 4.9 \\
\hline 849 8 \& Clifilliand, Luckse Sound \& \({ }^{43^{\circ}} 43^{\circ} 42^{\prime}\) \& \(70^{\circ} 07^{\prime}\)
70 \& -0 02
+005 \& -002
+001 \& *0.00 \& -1.00 \& 9.1 \& 10.4
10.3 \& 4.9 \\
\hline 851 \& Long Island \& \(43^{\circ} 41\) ' \& \(70^{\circ} 10^{\prime}\) \& -001 \& +000 \& *1.00 \& \(\cdot 1.00\) \& 9.1 \& 10.4 \& 4.9 \\
\hline 853 \& Cow Island \& \(43^{\circ} 41^{\prime}\) \& \(70^{\circ} 11^{\prime}\) \& -0 01 \& 000 \& *1.00 \& *1.00 \& 9.1 \& 10.5 \& 4.9 \\
\hline 855 \& Presumpscot River Bridge \& \(43^{\circ} 41^{\prime}\) \& \(70^{\circ} 15^{\prime}\) \& +0 01 \& +0 04 \& \(\cdot 1.01\) \& -1.06 \& 9.2 \& 10.6 \& 5.0 \\
\hline 857 \& Back Cove . . \({ }^{\text {a is.... }}\) \& \(43^{\circ} 41^{\prime}\) \& \(70^{\circ}{ }^{15}\) \& +002 \& +0 06 \& *0.97 \& *0.97 \& 9.1 \& 10.5 \& 4.9 \\
\hline 885 \& Great Diamond Island
Peaks Island \& \({ }^{43^{\circ}}{ }^{\circ} 40^{\prime}\) \& \(70^{\circ}{ }^{12}\) \& -001 \& 000 \& "0.99 \& *1.00 \& 9.0 \& 10.4 \& 4.9 \\
\hline 861
863 \& Peaks Island
Cushing Island \& \(43^{\circ}\)
\(43^{\circ} 39^{\prime}\) \& \begin{tabular}{l}
\(70^{\circ}\) \\
\(70^{\circ} 12^{\prime}\) \\
\\
\hline
\end{tabular} \& -004
+001 \& -008
000 \& \({ }^{*} 0.99\) \& **.90 \& 9.0
9.0 \& 10.4
10.4 \& 4.8 \\
\hline 865 \& PORTLAND \& \(43^{\circ} 40^{\prime}\) \& \(70^{\circ} 15^{\prime}\) \& \& Daily pr \& dictions \& \& 9.1 \& 10.4 \& 4.9 \\
\hline 867 \& Fore River \& \(43^{\circ} 38^{\prime}\) \& \(70^{\circ} 17^{\prime}\) \& +0 02 \& -08 \& *1.00 \& +09 \& 9.1 \& 10.5 \& 4.9 \\
\hline \multirow[t]{2}{*}{869} \& Portland Head Light \& \(43^{\circ} 37{ }^{\prime}\) \& \(70^{\circ} 12^{\prime}\) \& -0 02 \& -0 02 \& -0.97 \& -0.97 \& 8.9 \& 10.2 \& 4.8 \\
\hline \& \multicolumn{3}{|l|}{MAINE, outer coast-cont.} \& \& \& \& \& \& \& \\
\hline 871 \& Richmond Island \& \(43^{\circ} 33^{\prime}\) \& \(70^{\circ} 14\) \& -0 03 \& -0 03 \& 0.98 \& *0.98 \& 8.9 \& 10.1 \& 4.8 \\
\hline 873 \& Old Orchard Beach \& . \(43^{\circ} 31^{\prime}\) \& \(70^{\circ} 22^{\prime}\) \& 000 \& -0 06 \& \({ }^{0} 0.97\) \& -0.97 \& 8.8 \& 10.1 \& 4.7 \\
\hline 875 \& Wood Island Harbor \& \(43^{\circ} 27^{\prime}\) \& \(70^{\circ} 21^{\prime}\) \& +0 02 \& -0 04 \& -0.96 \& -0.96 \& 8.7 \& 9.9 \& 4.7 \\
\hline 877 \& Cape Porpoise \& \(43^{\circ} 22^{\prime}\) \& \(70^{\circ} 26^{\prime}\) \& +0 12 \& +014 \& 0.95 \& -0.95 \& 8.7 \& 9.9 \& 4.7 \\
\hline 879 \& Kennebunkport \& \(43^{\circ}\) 21' \& \(70^{\circ} 28^{\prime}\) \& +0 16 \& +0 16 \& \({ }^{*} 0.94\) \& -0.94 \& 8.6 \& 9.9 \& 4.6 \\
\hline 881 \& York Harbor \& \(4^{43^{\circ}}{ }^{\circ} 8^{\prime}\) \& \(70^{\circ} 388^{\circ}\) \& +003 \& +013 \& 0.95 \& -0.95 \& 8.6 \& 9.9 \& 4.6 \\
\hline \multirow[t]{2}{*}{883} \& \begin{tabular}{l}
Seapoint, Cutts island \\
MAINE and NEW HAMPSHIRE
\end{tabular} \& \(43^{\circ} 05^{\prime}\) \& \(70^{\circ} 40^{\prime}\) \& +0 01 \& -0 04 \& \({ }^{\circ} 0.96\) \& -0.96 \& 8.8 \& 10.1 \& 4.7 \\
\hline \& Portsmouth Harbor \& \& \& \& \& \& \& \& \& \\
\hline 885 \& Jaftrey Point \& \(43^{\circ} 03^{\prime}\) \& \(70^{\circ} 43^{\prime}\) \& -0 03 \& -005 \& *0.95 \& -0.95 \& 8.7 \& 10.0 \& 4.7 \\
\hline 887 \& Gerrish Island \& \(43^{4}{ }^{\circ} 04^{\prime}\) \& \(70^{\circ}{ }^{\circ} 42^{\prime}\) \& -0 02 \& -003 \& *0.95 \& -0.95 \& 8.7 \& 10.0 \& 4.7 \\
\hline 889 \& Fort Point . \& \(43^{43^{\circ}} 04^{\prime}\) \& \(70^{\circ}{ }^{\circ} 43^{\prime}\) \& +003 \& +007 \& *0.94 \& *0.94 \& 8.6 \& 9.9 \& 4.6 \\
\hline 891 \& Kittery Point \& \(43^{\circ} 05^{\prime}\) \& \(70^{\circ} 42^{\prime}\) \& -0 07 \& +001 \& \({ }^{*} 0.96\) \& *0.96 \& 8.7 \& 10.0 \& 4.7 \\
\hline 893 \& Seavey Island \& \(43^{4}{ }^{\circ} 05^{\prime}\) \& \(70^{\circ}{ }^{\circ}{ }^{\circ} 5^{\prime}\) \& +020 \& +018 \& *0.89 \& *0.89 \& 8.1 \& 9.4 \& 4.4 \\
\hline 895 \& Portsmouth Piscataqua River \& \(43^{\circ} 05^{\prime}\) \& \(70^{\circ} 45^{\prime}\) \& +022 \& +0 17 \& \({ }^{\circ} 0.86\) \& *0.86 \& 7.8 \& 9.0 \& 4.2 \\
\hline 897 \& Atlantic Heights \& \(43^{\circ} 05^{\prime}\) \& \(70^{\circ} 46^{\prime}\) \& +037 \& +0 28 \& \(\bullet 0.82\) \& *0.82 \& 7.5 \& 8.6 \& 4.0 \\
\hline 899 \& Dover Point \& \(43^{\circ} 07{ }^{\prime}\) \& \(70^{\circ} 50^{\prime}\) \& +133 \& +127 \& \(\bigcirc 0.70\) \& *0.70 \& 6.4 \& 7.4 \& 3.4 \\
\hline 901 \& Salmon Falls River entrance \& \(43^{\circ} 11\) ' \& \(70^{\circ} 50^{\prime}\) \& +135 \& +152 \& 0.75 \& *0.75 \& 6.8 \& 7.8 \& 3.6 \\
\hline 903 \& Squamscott River RR. Bridge
Gosport Harbor, Isles of Shoals \& \(43^{\circ}\)
\(42^{\circ}\)
0 \(03^{\prime}\) \& \(7{ }^{70}{ }^{\circ} 55^{\circ}\) \& +2 19 \& +241
-002 \& \(\stackrel{*}{*} 0.75\) \& -0.75 \& 6.8 \& 7.8 \& 3.6 \\
\hline \multirow[t]{2}{*}{905
907} \& Gosport Harbor, Isles of Shoals
Hampton Harbor \& \(42^{\circ}\)
\(42^{\circ}\)
54 \(4^{\prime}\) \& \(70^{\circ}\)
\(70^{\circ}\)
\(47^{\prime}\) \& +002
+014 \& -0 02
+032 \& \({ }^{*} 0.93\) \& \({ }^{-0.93}\) \& 8.5
8.3 \& 9.8
9.5 \& 4.5
4.5 \\
\hline \& MASSACHUSETTS, outer coast \& \& \& \& \& \& \& \& \& \\
\hline 909 \& Merrimack River entrance \& \(42^{\circ}{ }^{\circ} 49^{\prime}\) \& \(70^{\circ} 49^{\prime}\) \& +0 20 \& +024 \& \({ }^{*} 0.91\) \& *0.91 \& 8.3 \& 9.5 \& 4.4 \\
\hline 911 \& Newburyport, Merrimack River \& \(42^{\circ} 49^{\prime}\) \& \(70^{\circ} 52^{\prime}\) \& +0 31 \& +111 \& *0.86 \& *0.86 \& 7.8 \& 9.0 \& 4.2 \\
\hline 913 \& Plum Island Sound (south end) \& \(42^{\circ} 43^{\prime}\) \& \(70^{\circ} 47^{\prime}\) \& +0 12 \& +0 37 \& *0.94 \& *0.94 \& 8.6 \& 9.9 \& 4.6 \\
\hline 915 \& Annisquam. \& \({ }^{42^{\circ}}{ }^{\circ} 39^{\circ}\) \& \(70^{\circ}\)
\(70^{\circ}\)
\(41^{\prime}\) \& 000 \& -0 07 \& \(\bigcirc 0.96\) \& *0.96 \& 8.7 \& 10.1 \& 4.7 \\
\hline \multirow[t]{2}{*}{917} \& Rockport \& \(42^{\circ} 40^{\prime}\) \& \(70^{\circ} 37^{\prime}\) \& +0 04 \& +0 02 \& \(\bullet 0.94\) \& *0.94 \& 8.6 \& 10.0 \& 4.6 \\
\hline \& \& \& \& \multicolumn{4}{|c|}{on Boston, p. 36} \& \& \& \\
\hline 919 \& Gloucester Harbor \& \(42^{\circ} 36^{\prime}\) \& \(70^{\circ} 40^{\prime}\) \& -001 \& -0 04 \& -0.91 \& *0.91 \& 8.7 \& 10.1 \& 4.6 \\
\hline 921 \& Manchester Harbor \& \(42^{\circ} 34^{\prime}\) \& \(70^{\circ} 47^{\prime}\) \& 000 \& -0 04 \& *0.92 \& -0.92 \& 8.8 \& 10.2 \& 4.7 \\
\hline 923 \& Beverly \& \(42^{\circ} 32^{\prime}\) \& \(70^{\circ} 53^{\prime}\) \& +0 02 \& -0 03 \& -0.94 \& -0.94 \& 9.0 \& 10.4 \& 4.8 \\
\hline 925 \& Salem. \& \(42^{\circ} 31^{\prime}\) \& \(70^{\circ} 53^{\prime}\) \& +0 04 \& +003 \& *0.92 \& -0.92 \& 8.8 \& 10.2 \& 4.7 \\
\hline 927 \& Marblehead Broad Sound \& \(42^{\circ} 30^{\prime}\) \& \(70^{\circ} 51^{\prime}\) \& 000 \& -0 04 \& *0.95 \& -0.95 \& 9.1 \& 10.6 \& 4.8 \\
\hline \& Nahant . . \& \(42^{\circ} 25^{\prime}\) \& \(70^{\circ} 55^{\prime}\) \& +0 01 \& 000 \& *0.94 \& *0.94 \& 9.0 \& 10.4 \& 4.8 \\
\hline \multirow[t]{2}{*}{931} \& Lynn Harbor \& \(42^{\circ} 27^{\prime}\) \& \(70^{\circ} 58^{\prime}\) \& +0 10 \& +006 \& *0.96 \& *0.96 \& 9.2 \& 10.7 \& 4.9 \\
\hline \& Boston Harbor \& \& \& \& \& \& \& \& \& \\
\hline 933 \& Boston Light \& \(42^{\circ} 20^{\prime}\) \& \(70^{\circ} 53^{\prime}\) \& +002 \& +0 03 \& -0.94 \& *0.94 \& 9.0 \& 10.4 \& 4.8 \\
\hline 935 \& Lovell Island, The Narrows \& \(42^{\circ}{ }^{\circ} 20^{\prime}\) \& \(70^{\circ} 56^{\prime}\) \& +004 \& +003 \& -0.95 \& **.95 \& 9.1 \& 10.6 \& 4.8 \\
\hline 937 \& Deer Island (south end) \& \(42^{\circ} 21^{\prime}\) \& \(70^{\circ} 58^{\prime}\) \& +001 \& 000 \& -0.97 \& *0.97 \& 9.3 \& 10.8 \& 4.9 \\
\hline 939 \& Belle Isle Inlet entrance \& \(42^{\circ} 23^{\prime}\) \& \(71^{\circ} 000\) \& +0 20 \& +0 17 \& *1.00 \& -1.00 \& 9.5 \& 11.0 \& 5.0 \\
\hline 941
943 \& Castle Island
BOSTON \& \begin{tabular}{l}
\(42^{\circ}\) \\
\(42^{\circ} 20^{\prime}\) \\
\hline
\end{tabular} \& \(71^{\circ}\)
\(71^{\circ} 01\)
01

7 \& 000 \& ${ }_{\text {+ }}^{+0} 02$ \& *0.99 \& -0.99 \& 9.4 \& 10.9
11.0 \& 5.0
5.1

\hline 945 \& Dover St. Bridge, Fort Point Channel \& | 42° |
| :--- |
| 42° |
| 21 |
| 1 | \& 71°

$71^{\circ} 03$
03^{\prime} \& +006 \& Daily pre
+008 \& ${ }_{*}+1.01$ \& $\cdot 1.01$ \& 9.5 \& 11.0
11.0 \& 5.1

\hline \& Charles River \& \& 71 \& +0 06 \& \& \& 1.01 \& 9.6 \& \&

\hline 947 \& Chariestown Bridge \& $42^{\circ} 22^{\prime}$ \& $71^{\circ} 04^{\prime}$ \& +0 04 \& +004 \& *1.00 \& *1.00 \& 9.5 \& 11.0 \& 5.0

\hline 949 \& Charles River Dam \& $42^{\circ} 22^{\prime}$ \& $71^{\circ} 0{ }^{\prime}$ \& +0 07 \& +0 06 \& *1.00 \& -1.00 \& 9.5 \& 11.0 \& 5.0

\hline 951 \& Charlestown \& $4{ }^{42^{\circ}} 42^{\circ} 22^{\prime}$ \& $71^{7} 003{ }^{\text {l }}$ \& 000 \& +001 \& *1.00 \& -1.00 \& 9.5 \& 11.0 \& 5.0

\hline 953 \& Chelsea St. Bridge, Chelsea River
Neponset. Neponset River . . \& $42^{42^{\circ}} 43^{\prime}{ }^{\prime}$ \& $71^{\circ} 01{ }^{\circ}$ \& +0 01 \& +0 06 \& -1.01 \& *1.01 \& 9.6 \& 11.1 \& 5.1

\hline 955 \& Neponset, Neponset River
Moon Head \& ${ }^{42^{\circ}} 42^{\circ} 17^{\prime}$ \& $710^{71}{ }^{\circ} 02{ }^{\prime}$ \& -0 02 \& +0 03 \& $\bigcirc 1.00$ \& *1.00 \& 9.5 \& 11.0 \& 5.0

\hline 959 \& Mainsford Island, Nantasket Roads \& 42°
42°
19 \& 70°
$70^{\circ} 59^{\prime}$ \& +0
+01
0 \& +004
+002 \& *0.95 \& ${ }^{*} 0.99$ \& 9.4
9.1 \& 10.9
10.6 \& 5.0
4.8

\hline
\end{tabular}

Endnotes can be found at the end of table 2.

Portland, Maine, 1997

Times and Heights of High and Low Waters

Time meridian $75^{\circ} \mathrm{W} .0000$ is midnight. 1200 is noon.
Heights are referred to mean lower low water which is the chart datum of soundings.
G-14

Boston Harbor (Deer Island Light), Massachusetts, 1997
F-Flood, Dir. 254° True E-Ebb, Dir. 111° True

January								February								March							
Slack		Maximum		Slack Maximum				Slac		Maximum		Slack Maximu				Slack		Maximum		Slack		Maximum	
	${ }^{\mathrm{n} ~ m}$	${ }^{\text {h }} \mathrm{m}$	$\xrightarrow{\text { knots }}$		${ }^{\mathrm{h}} \mathrm{m}$	${ }^{n}{ }_{0}^{\text {m }}$	1.1 F		${ }^{\text {m m }}$	${ }^{\text {h }}$	${ }_{\substack{\text { knots } \\ 1.2 F}}^{\text {kn }}$			0331	1.0 F		${ }_{\text {h }}^{\text {h m }}$	${ }_{0600}$	${ }_{\text {knois }} 1.2 \mathrm{k}$			${ }_{\substack{n \\ 0 \\ 0159}}$	${ }_{\substack{\text { knots } \\ 1.1 \mathrm{~F}}}$
	0342	${ }_{082} 00$	1.0 E	16	0421	0855	1.35	1	0442	0739	1.1.2		${ }^{0} 5054$	1026	1.38	1	1088	1211	1.2 F	16	0424	0900	1.3E
	1029	1233	1.0 F	Th	1107	1430	1.0 F		1136	1340	1.17		${ }_{1} 243$	1605	1.0 F		1541	1821	1.0 E		1112	1436	1.0F
0	${ }^{1603}$	2045	0.9 E		1651 230	2123	1.2 E		1711	2003	1.0 E		1834	2253	1.2 E		2226				${ }_{2334}^{1703}$	2130	1.1 E
Th		01	1.17	17		0258	1.15	2		0204	1.2 F			0429	1.17	2		0034	${ }^{1.3 F}$	17		0301	1.0 F
	1121	0914	1.0 E	17	0521	0953	${ }_{1}^{1.3 E}$	Su	0538	0848	${ }_{1}^{1.15}$		0655	1121	1.4 E	Su	0406	O656	${ }_{1}^{1.15}$	M	0524	0959	${ }^{1.3 \mathrm{E}}$
	1121 1657	${ }_{2136}^{1329}$			1753	2221	1.2 E		1809	2117	1.0 E		1941	2347	1.3 E	0	1637	1921	1.0 E		1806	2227	1.2 E
	40																2321						
3	25	1003	1.11	18	0621	1050	1.4 E	3	0634	1049	1.2 E	18		1213	1.5 E	3		0801	1.18	18	0624	1054	1.3 E
	12	1431	1.17	Sa	1309	1630			1325	1545	1.2 F	Tu	36	1753	1.17		1159	1402	1.25	Tu	1312	1633	1.05
	51	2225	1.0 E		1856	2316	1.3E		19	2322	1.1 E		48				1737	2033	1.0 E		1911	2321	1.2 E
Sa	0031	0254	1.2 F	19	0128	0453	1.15	4	0144	0407	${ }_{1}^{1.3 F}$	19		0038	${ }_{1}^{13 \mathrm{E}}$	4	0019	${ }_{0}^{0228}$	1.2 F	19	0133	${ }^{0} 0456$	${ }_{1}^{1.45}$
	${ }^{0} 1818$			Su	${ }^{0720}$	1172	${ }_{1.15}^{1.5 E}$	Tu	${ }^{1430}$	1175	${ }_{13 \mathrm{~F}}^{1.3 \mathrm{E}}$	W	0253	0614	1.1F	,	${ }^{0} 12501$	0923 1507	${ }_{1}^{1.2 F}$	w	1424	1147	1.4E
	1846	$\begin{aligned} & 1605 \\ & 2311 \end{aligned}$	1.15		1958				2004				15%	1842	1.2F)	1838	2300	1.1 E		2023		
	0123	0359	1.3 F	20		0009	1.4 E			0014	1.2 E	20		0126	1.4 E	5	0118	0333	1.2 F	20		0013	1.3 E
Su	0711	1135	1.2 E	M	0815	0546	1.2F	w	0239		1.45	Th				w			${ }_{1}^{1.3 E}$	Th			
	1357 1940	2354	${ }_{1.1}^{1.2 F}$		1457	1815	1.2 F		1510	1817	1.4 F		1607	${ }_{1926}$	1.3 F		1938	2356	1.2 E		1455	1814	1.2 F
					2054				2059				2206								05		
6	-0214	${ }_{1214}$	$\stackrel{1.3 F}{1.35}$	21	0312	0659	1.48	${ }_{\text {Th }}$	0331	0102 0629	${ }_{1}^{1.5 F}$	21		0211	1.4E	6	${ }_{0}^{0214}$	${ }_{1217}$	${ }^{1.45}$	21	0316	${ }_{0635} 0101$	${ }_{1.15}^{1.3 \mathrm{E}}$
	1447	1749	1.3 F	Tu	0906	1323	1.5 E		0919	1319	1.5 E		1013	1432	1.4 E		1446	1758	1.4 F		0906	${ }^{1323}$	
	2032				1544	1903	1.3F		1601	1908	1.55		1647	2008	1.3 F		2035				${ }^{1539}$	1859	1.2 F
7		0031	1.2 E			0147	1.4ε			0148				0255		7		0047	1.4 E	22		0146	
	0304		1.4 F	W	0400	0721	1.3F		0422		1.5	Sa	0505	0826	1.2 F	${ }_{F}$	0309	0619	1.45	Sa	0359	071	
	-852	1248	1.4 E		0951	1409 1988	${ }^{1.35}$			${ }_{1957}^{1405}$	${ }_{1.6 \mathrm{~F}}^{1.6}$	O		2047	1.35		${ }_{1538}$	1852	1.5 F		0947 1619	${ }_{1}^{1406}$	1.3 F
	1536 2122				${ }_{2223}$							O	2315				2129				2213		
8	0353	0106 0636	1.3 E 1.5 1.5	23	0444	${ }_{0806}^{0233}$	1.48	8		${ }_{0813}^{0235}$	${ }^{1.5 \mathrm{E}}$	23		03035	1.35	8		${ }_{0}^{0136} 0714$	${ }^{1.5 \mathrm{E}}$	23		0229 0759	1.3 E 1.2 F
	0942	1324	1.5 E	Th	1033	1454	1.5 E		1102	1451	1.6 E	Su	1127	1551	1.3 E	Sa	0950	1355	1.6 E		1024	1447	1.3 E
-	${ }_{2}^{1624}$	1918	1.5 F	\bigcirc	${ }_{2302}^{1710}$	2031	1.3 F		1740 232	2045	1.6 F		${ }_{2350}^{1802}$	2121	1.3 F	-	$\begin{aligned} & 1628 \\ & 2021 \end{aligned}$	1942	1.6 F	0	$\begin{aligned} & 1657 \\ & 2247 \end{aligned}$	2019	1.3F
		0145	1.4 E	24		0317	1.3 E	9		0324 0903	${ }_{1}^{1.5 E}$	24		0411 0934	1.2 E	9		O224	${ }_{1}^{1.6 \mathrm{E}}$	24		0308 0837	
9	0443 1031	1405	${ }_{1}^{1.55}$		10527	0847 1537	1$1.2 F$ 1.45	Su		1541	$\stackrel{1.5 F}{1.5 E}$	-	10623	-	1.12 L	Su		1443	${ }_{1}^{1.66}$	M	0519 1101	1523	1.2 l
	1713	2001	1.5 F		1750	2111	1.3 F		1830	2133	1.67		1840	2137	1.3 F		1718	2030	1.7 F		1733	2053	1.3F
10	2301	0230	1.4 E		2340	0359	1.3 E		22	0418	1.5 E			0435	1.1 E	10			1.6 E	25		0342	
	32	0806	1.5 F	Sa	${ }^{0608}$	${ }^{0926}$	1.2F		O657	0954	1.5	Tu	0703	0923	1.2F	10		${ }^{0854}$	${ }_{16 \mathrm{~F}}^{1.6 \mathrm{~F}}$	${ }_{\mathrm{Tu}}^{20}$	0557 1137	1598	1.2F
		1450	1.5 E		1151 1830		1.3 E 1.2 F		${ }_{1920}^{243}$	2223	1.5 F		1219	2136	1.3 F		1833 1807	2118	1.6 F		1811	2102	1.1 .1 E 1
	${ }_{2351}^{1802}$	2043	1.5 F																		2357		
$\begin{aligned} & 11 \\ & \mathrm{sa} \end{aligned}$		0319 0854	1.4 E 1.5 1	26	0017	0440 0958	1.2 L		0112 0749	0519 1051	1.48	26	0103	0404 0954	${ }_{1}^{1.18} 1.18$	11		0403 0944	${ }_{1}^{1.5 \mathrm{~F}}$	26		${ }_{0}^{0932}$	1.2E
	1210	1539	1.4 E	Su	1229	1656	1.2 E			1746	1.3E	w	1320	1610	1.15	Tu		1625	1.5 E	w	1215	1518	1.1 E
	1851	2129	1.5 F		1910	2213	1.2 F		2012	2320	1.4 F		2000	2213	1.45		1857	2206	1.6 F		1849	2109	1.4 F
		0417 0943	1.3 E	27	0054 0731	0518	1.1 E		${ }_{0}^{0204}$	0624 1154	1.4 E	27	0143	0433 1036	${ }_{1}^{1.2 \mathrm{E}}$			0457 1036	1.5 E	27	0035	0335	${ }_{1}^{1.2 E}$
	${ }_{1301} 071$	163	1.4.	M	1309	1632	1.15		1429		1.2 E	Th		1645	1.15		${ }_{1314}$		1.45	Th	1254	1543	
	1943	2221	1.45		1951	2206	1.27		2107				2045	2257	1.47		1948	2258	1.5 F		1930	2146	1.4 F
		0540		28	0134	0444	1.0 E			0023	1.3 F	28		0512		13		0557	1.4 E			0405	1.2 E
	10	1040	1.3 F	Tu	0816	1023	1.2 F		0258	0727	1.3 E	2	0917	1122	1.2 F			1132	1.3 F		0800	101	${ }^{1.3 F}$
	1354	1809	1.3 E		1350	1647	1.0 E		0941		1.15				1.1 E			1827	1.3E			1618	1.1 E
	2038	2336	1.3 F		2034	2244	1.2 F		${ }^{1526}$	1957	1.2 E		2133	2344	1.3F		2040	2355	1.3 F		2016	2229	1.4 F
		0650			0216	0510	1.0 E			0127													
	0908	1214	1.2 F	w	0901	1106	1.2 F				1.3 E								1.2 F			1055	1.3F
	145	1919	1.2 E	W	1435	1722	1.0 E		1041	1403	1.0 F							1930	1.2 E	Sa	1423	1702	1.1 E
	2132				2120	2329	1.2F		1627	2058	1.2 E						2136				2104	2316	1.4F
0		0050	1.2 F	30	0301	0551 1153	1.1 E	15		0230	1.11									30	0245	0532	1.2 E
	0322 1007	0754		Th	0950		1.15	Sa			${ }^{1.3 \mathrm{E}}$								${ }_{1}^{1.1 .1}$	Su		1144	${ }_{1.1}^{1.3 F}$
	$\begin{aligned} & 1007 \\ & 1549 \\ & \hline 2531 \end{aligned}$	2023	1.2 E		2209														1.1 E		2158		1.1 E
					50	0640	1 E															0627	1.2 E
					2300																2255		

Time meridian $75^{\circ} \mathrm{W} .0000$ is midnight. 1200 is noon.
At times of slack water before maximum ebb, the speed actually averages 0.3 knot in a direction of 184° true.

Pollock Rip Channel, Massachusetts, 1997

F-Flood, Dir. 035° True E-Ebb, Dir. 225° True

